Right choice is (b) \(\frac{1}{\sqrt{2}}\)
The explanation is: I=\(\int_0^{\frac{\sqrt{π}}{2}} \,2x \,cos x^2 \,dx\)
Let x^2=t
Differentiating w.r.t x, we get
2x dx=dt
The new limits
When x=0,t=0
When \(x={\frac{\sqrt{π}}{2}}, t=\frac{π}{4}\)
∴\(\int_0^{\frac{\sqrt{π}}{2}} \,2x \,cos x^2 \,dx=\int_0^{\frac{π}{4}} \,cost \,dt\)
\(I =[sint]_0^{\frac{π}{4}}=sin \frac{π}{4}-sin0=1/\sqrt{2}\).