The correct option is (b) \(\frac{e^{2x}}{4} (2x-1)+C\)
Explanation: By using the formula \(\int u.v \,dx=u\int \,v \,dx-\int u'(\int \,v \,dx)\) we get
\(\int xe^{2x} dx=x\int e^{2x} dx-\int (x)’\int e^{2x} \,dx\)
=\(\frac{xe^{2x}}{2}-\int 1.\frac{e^{2x}}{2} \,dx\)
=\(\frac{xe^{2x}}{2}-\frac{e^{2x}}{4}\)
=\(\frac{e^{2x}}{4} (2x-1)+C\)