The correct answer is (c) \(\frac{π}{4}\)
To explain I would say: Let \(I=\int_0^{π/2}sin^{2}x \,dx\)
F(x)=\(\int sin^2x \,dx\)
=\(\int \frac{(1-cos2x)}{2} \,dx\)
=\(\frac{1}{2} (x-\frac{sin2x}{2})\)
Applying the limits, we get
\(I=F(\frac{π}{2})-F(0)=\frac{1}{2} (\frac{π}{2}-\frac{sinπ}{2})-\frac{1}{2} (0-\frac{sin0}{2})\)
=\(\frac{1}{4} (π-0)-0=\frac{π}{4}\).