Right choice is (b) 24 log2
To explain I would say: I=\(\int_1^2 \frac{12 logx}{x} \,dx\)
Let logx=t
Differentiating w.r.t x, we get
\(\frac{1}{x} \,dx=dt\)
The new limits
When x=1,t=0
When x=2,t=log2
\(\int_1^2 \frac{12 logx}{x} dx=12\int_0^{log2} \,t \,dt\)
=\(12[t^2]_0^{log2}=12((log2)^2-0)\)
=12 log4=24 log2(∵(log2)^2=log2.log2=log4=2 log2)