The correct answer is (a) 4928 J/mol
Easy explanation: T1 = 150K, T2 = 300K and k2 = 10k1
When we have two values of k and T
k1=ko\(\sqrt{T1}e^{-\frac{E}{RT1}}\) and k2=ko\(\sqrt{T2}e^{-\frac{E}{RT2}}\)
Modifying it gives
ln(k1)=ln(ko)+0.5ln(T1) – \((\frac{E}{R})\frac{1}{T1}\) and ln(k2)=ln(ko) – \((\frac{E}{R})\frac{1}{T2} \)
On further simplification we get ln\((\frac{k1}{k2}) = 0.5ln(\frac{T1}{T2}) \frac{E}{R} (\frac{1}{T1}-\frac{1}{T2}) \)
ln\((\frac{k1}{10k1})\)=0.5ln\((\frac{150}{300}) – \frac{E}{8.314}(\frac{1}{300} – \frac{1}{150}) \)
E = 4928 J/mol.