The correct choice is (a) \(-z\frac{dX(z)}{dz}\)
The explanation: From the definition of z-transform, we have
X(z)=\(\sum_{n=-\infty}^{\infty} x(n) z^{-n}\)
On differentiating both sides, we have
\(\frac{dX(z)}{dz}=\sum_{n=-\infty}^{\infty} (-n) x(n) z^{-n-1}=-z^{-1} \sum_{n=-\infty}^{\infty}nx(n) z^{-n}=-z^{-1}Z\{nx(n)\}\)
Therefore, we get \(-z\frac{dX(z)}{dz}\) = Z{nx(n)}.