Correct answer is (a) True
To explain: Schlomilch’s Remainder for Maclaurin’s Theorem is given by, \(\frac{x^n(1-θ)^{n-p}}{(n-1)!p} f^{(n)}(θx).\)
To obtain Cauchy’s Remainder for Maclaurin’s Theorem, we put p=1, which gives us,
\(\frac{x^n(1-θ)^{n-1}}{(n-1)!}f^{(n)}(θx).\)