Correct option is (b) \(\frac{x^n}{n!} f^{(n)}(θx)\)
The best I can explain: Maclaurin’s Theorem is a special case of Taylor’s Theorem; hence Schlomilch’s Remainder for Maclaurin’s Theorem is given by, \(\frac{x^n(1-θ)^{n-p}}{(n-1)!p} f^{(n)}(θx).\) To obtain Lagrange’s Remainder for Maclaurin’s Theorem, we put p=n, which gives us, \(\frac{x^n}{n!} f^{(n)}(θx).\)