Correct choice is (a) f(x) = -3-3(x+1)+(x+1)^2
The best I can explain: Given, f(x)= x^2-x+1 , f(-1)=1+1+1=3
f'(x) = 2x-1,f'(-1)=2(-1)-1= -3
f”(x) = 2, f”(-1)=2
f^n (x)=0, for n > 2
The Taylor series expansion of f(x) about x=a is,
f(x) = f(a)+(x-a) f'(a)+(x-a)^2 \(\frac{f”}{2!}\) (a)+⋯
Here a=-1,
f(x) = f(-1)+(x+1) f'(-1)+(x+1)^2 \(\frac{f”}{2!}\) (-1) since,for n > 2, f^n (x) = 0.
f(x) = -3-3(x+1)+(x+1)^2