Correct answer is (a) 0
Best explanation: First convert the function sinh(x)⁄x into its Taylor series expansion
\(\frac{sinh(x)}{x}=\frac{\frac{x}{1!}+\frac{x^3}{3!}+\frac{x^5}{5!}….\infty}{x}\)
\(\frac{sinh(x)}{x}=\frac{1}{1!}+\frac{x^2}{3!}+\frac{x^4}{5!}….\infty\)
Now pick up the whole function \(((sin(x))(\frac{sinh(x)}{x}))\) and apply Leibniz rule up to the fourth derivative we have
\(((sin(x))(\frac{sinh(x)}{x}))^{(4)}=c_0^4sin(x)(\frac{1}{1!}+\frac{x^2}{3!}+\frac{x^4}{5!}…..\infty)\) \(-c_1^4cos(x)(\frac{2x}{3!}+\frac{4x^3}{5!}…..\infty)+…..+c_4^4sin(x)(\frac{4!}{5!}+\frac{(7.6.5.4)x^3}{7!}…..\infty)\)
Substituting x=0 we have
\(((sin(x))(\frac{sinh(x)}{x}))^{(4)}\) = 0