The correct choice is (b) sec φ
Explanation: w.k.t \(\frac{ds}{dx} = \sqrt{1+(\frac{dy}{dx})^2}\)
\(\frac{dy}{dx} = a \frac{tan \frac{x}{a}.sec\frac{x}{a}}{sec\frac{x}{a}} \frac{1}{a} = tan \frac{x}{a} \)
substituting we get
\(\frac{ds}{dx} = \sqrt{1+(tan \frac{x}{a})^2}=sec\frac{x}{a}, \,but \,w.k.t\, \frac{dy}{dx} = tan φ = tan\frac{x}{a} \,thus\, φ=\frac{x}{a}\)
\(\frac{ds}{dx} = secφ.\)