Right option is (a) \(ln(2)+x/2+x^2/8-x^4/192+….\)
To explain: Given, f(x) = ln(1+e^x), f(0) = ln(2)
Differentiating it we get
\(f{‘}(x)=\frac{e^{x}}{1+e^x}=1-1/(1+e^x), f{‘}(0)=1/2\)
Again differentiating we get
\(f”(x)=e^x/(1+e^x)^2 =(f'(x))/(1+e^x),f”(0)=1/4\)
\(f”'(0)=((1+e^x) f”(x)-f'(x) e^x)/(1+e^x)^2 =(f”(x))/(1+e^x)-f'(x) f”(x)\), hence f”'(0)=0
\(f””(0)=(1(1+e^x) f”'(x)-f”(x) e^x)/(1+e^x)^2 -(f”(x))^2-f'(x) f”'(x)\), hence f””(0)=1/8
Hence, by mclaurin’s series,
\(f(x)=ln(1+e^x)=ln(2)+x/2+x^2/8-x^4/192+…\)