Correct choice is (d) y + xy + ……..
Best explanation: Now, f(x, y)=e^x Sin(y), f(0,0) = 0
Therefore,
fx (x,y) = e^x Sin(y), hence fx (0,0) = 0
fy (x,y) = e^x Cos(y), hence fy (0,0) = 1
fxx (x,y) = e^x Sin(y), hence fxx (0,0) = 0
fyy (x,y) = -e^x Sin(y), hence fyy (0,0) = 0
fxy (x,y) = e^x Cos(y), hence fxy (0,0) = 1
By taylor expansion,
f(x,y) = f(0,0)+\([x \frac{∂f}{∂x}+y \frac{∂f}{∂y}]+\frac{1}{2!} [x^2 \frac{∂^2 f}{∂x^2}+2xy \frac{∂^2 f}{∂x∂y}+y^2 \frac{∂^2 f}{∂y^2}]+…\)
f(x,y) = 0 + 0 + y + \(\frac{1}{2!}\) [0 + 2xy + 0] +…..
f(x,y) = y + xy + ……..