The correct option is (b) \(\frac{1}{2}+\frac{x}{4}-\frac{x^3}{48}+….\)
Best explanation: Given,f(x)=\(\frac{e^x}{1+e^x}\)
Differentiating it we get
\(f^1 (x)=ln(1+e^x)+C\), now putting x=0 we get,c=0
Hence,
\(f^1 (x)=ln(1+e^x)\)
Now,\(f^1 (x)=ln(1+e^x)=ln(2)+\frac{x}{2}+\frac{x^2}{8}-\frac{x^4}{192}+..\)(By,Mclaurin’s expansion)
Hence, Differentiating it we get,
f(x)=\(\frac{1}{2}+\frac{x}{4}-\frac{x^3}{48}+….\).