Correct option is (b) ^1⁄8 tan^-1(x + ^1⁄2)
The best explanation: Add constant automatically
Given, \(\int \frac{1}{16x^2+16x+10}dx=\frac{1}{2}\int \frac{1}{4x^2+4x+5}dx\)
=\(\int \frac{1}{8(x^2+x+\frac{5}{4}+\frac{1}{4}+\frac{1}{4})}dx=\int \frac{1}{8[(x+\frac{1}{2})^2+1^2]}dx=\frac{1}{8}tan^{-1}(x+\frac{1}{2})\)