The correct choice is (b) -2.5, -1.5
Easy explanation: \(\lim_{x\rightarrow 0}\frac{(x(1+acos(x))-bsin(x))}{x^3}=1\)
Expanding terms of cos(x) and sin(x) and rearranging we get,
\(\lim_{x\rightarrow 0}\frac{(1+a-b)x+(\frac{b}{6}-\frac{a}{2})x^3+(\frac{a}{24}-\frac{b}{120})x^5+….}{x^3}=1\)
Since, given limit is finite, hence coefficients of powers of x should be zero and x^3 should be 1
⇒ 1 + a – b=0
⇒ ^b⁄6 – ^a⁄2 = 1
⇒ Solving the above two equations we get, a = -2.5, b = -1.5.