The correct option is (b) u ln(u)^2
The best I can explain: Let, v = ln(u) = \(\frac{x^2+y^2}{x+y} = x f(\frac{y}{x})\)
Hence by applying euler theorem,
\(x \frac{∂v}{∂x}+y \frac{∂v}{∂y}=v\)
Hence,
g(u) = \(x \frac{∂u}{∂x}+y \frac{∂u}{∂y}=u ln(u)\)
Hence,
\(x^2 \frac{∂^2 u}{∂x^2}+y^2 \frac{∂^2 u}{∂y}+2xy \frac{∂^2 u}{∂x∂y}\) = g(u)[g’(u)-1]
\(x^2 \frac{∂^2 u}{∂x^2}+y^2 \frac{∂^2 u}{∂y}+2xy \frac{∂^2 u}{∂x∂y}\) = u ln(u)[1+ln(u)-1] = u ln(u)^2