Correct choice is (b) 1
To explain I would say: We have to find
\(J = \frac{∂(p,q,r)}{∂(x,y,z)} = \begin{vmatrix}
\frac{∂p}{∂x} & \frac{∂p}{∂y} &\frac{∂p}{∂z}\\
\frac{∂q}{∂x} &\frac{∂q}{∂y} &\frac{∂q}{∂z}\\
\frac{∂r}{∂x} &\frac{∂r}{∂y} &\frac{∂r}{∂z}\\
\end{vmatrix}\)
But p=x+y+z, q=y+z, r=z (taking partial derivative)
\(J=\begin{vmatrix}
1&1&1\\
0&1&1\\
0&0&1\\
\end{vmatrix}(\frac{∂p}{∂x}=1, \frac{∂p}{∂y}=1, \frac{∂p}{∂z}=1, \frac{∂q}{∂x}=0, \frac{∂q}{∂y}=1, \frac{∂q}{∂z}=1, \frac{∂r}{∂x}=0, \\
\frac{∂r}{∂y}=0, \frac{∂r}{∂z}=1)\)
On expanding we get
J = 1(1 – 0) = 1
Thus j = 1.