Right choice is (a) ^b^2⁄2
To explain: Let, F(x)=\(\int \frac{ln(x)}{x} dx\)
Let, z=ln(x)=>dz=dx/x
=F(x)=∫ zdz=\(\frac{z^2}{2}=\frac{ln^2(x)}{2}\)
Area inside curve from 4a to a is,
\(F(ae^b)-F(a)=\frac{ln^2(ae^b )}{2}-\frac{ln^2(a)}{2}=\frac{ln^2(\frac{ae^b}{a})}{2}=\frac{ln^2(e^b)}{2}=\frac{b}{2}\)