Correct choice is (d) 3 ln(3) – 5 ln(2)
Explanation: Now, F(t)=\(\int \frac{t}{(t+3)(t+2)} dt\)
F(t)=\(\int \frac{t}{(t+3)(t+2)} dt\)
=\(\int [\frac{3}{t+3}-\frac{2}{t+2}]dx\)
=\(\int [\frac{3}{t+3}]dx-\int [\frac{2}{t+2}]dx\)
=3 ln(t+3)-2ln(t+2)
Now area inside a function is, F(0) – F(-1),
hence, F(0)-F(-1)=3 ln(3)-2 ln(2)-3 ln(2)+2 ln(1)=3 ln(3)-5ln(2)