Correct choice is (d) \(\frac{2}{5}\sqrt{tan(x)}[5+tan^2(x)]\)
Best explanation: Add constant automatically
Given, \(\int \frac{sec^4(x)}{\sqrt{tan(x)}} dx\)
=\(\int \frac{sec^2(x) sec^2(x)}{\sqrt{tan(x)}} dx\)
=\(\int \frac{1+t^2}{\sqrt{t}} dt\)
=\(\int [\frac{1}{\sqrt{t}}+t^{3/2}]dt\)
=\(2\sqrt{t}+\frac{2}{5} t^{5/2}\)
=\(\frac{2}{5}\sqrt{tan(x)}[5+tan^2(x)]\)