The correct answer is (b) 0
For explanation I would say: Given,F(x)=\(\int \frac{sec^4 (x)}{\sqrt{tan(x)}} dx\)
F(x)=\(\int \frac{sec^2 (x) sec^2 (x)}{\sqrt{tan(x)}} dx\)
=\(\int \frac{1+t^2}{\sqrt{t}} dt\)
=\(\int [\frac{1}{\sqrt{t}}+t^{3/2}]dt\)
=\(2\sqrt{t}+\frac{2}{5} t^{5/2}\)
F(x)=\(\frac{2}{5} \sqrt{tan(x)} [5+tan^2(x)]\)
Now area inside a function f(x) from x=0 to π, is
F(π)-F(0)=0-0=0