The correct answer is (b) Sin(4u) – Sin(2u)
Explanation: Let, v = Tan(u) = x^2 f(y/x)
By euler’s theorem,
g(u) = \(x \frac{∂u}{∂x}+y \frac{∂u}{∂y} = 2\frac{Tan(u)}{Sec^2 (u)} = Sin(2u)\)
Hence,
\(x^2 \frac{∂^2 u}{∂x^2}+y^2 \frac{∂^2 u}{∂y}+2xy \frac{∂^2 u}{∂x∂y} = g(u)[g’(u)-1]\)
\(x^2 \frac{∂^2 u}{∂x^2}+y^2 \frac{∂^2 u}{∂y}+2xy \frac{∂^2 u}{∂x∂y}\) = Sin(2u)[2Cos(2u)-1] = Sin(4u)-Sin(2u)