Correct choice is (a) True
The explanation is: Since f1(x,y) and f2(x,y) are homogeneous and of order n hence,
\(x \frac{∂f_1}{∂x}+y \frac{∂f_1}{∂y} = nf_1 (x,y)\)
\(x \frac{∂f_2}{∂x}+y \frac{∂f_2}{∂y} = nf_2 (x,y)\)
Hence adding these two equations,
We get
\(x \frac{∂f_1+f_2}{∂x}+y \frac{∂f_1+f_2}{∂y} = nf_2 (x,y)+nf_1 (x,y)\)
\(x \frac{∂f_3}{∂x}+y \frac{∂f_3}{∂y} = nf_3 (x,y)\)
Hence f3 satisfies euler’s theorem.