Correct answer is (b) \(x \frac{∂z}{∂x}+y \frac{∂z}{∂y}=1-\frac{x^2+y^2}{x+y} e^{\frac{x^2+y^2}{x+y}}\)
The best explanation: Given \(z=ln(\frac{x^2+y^2}{x+y})-e^\frac{x^2+y^2}{x+y}\)
Let, \(u = ln(\frac{x^2+y^2}{x+y})\) and \(v=e^(\frac{x^2+y^2}{x+y})\) hence z=u-v
Now, let \(u’ = e^u = \frac{x^2+y^2}{x+y}=xf(\frac{y}{x})\) hence u’ satisfies euler’s theorem,
Hence,
\(x \frac{∂u’}{∂x}+y \frac{∂u’}{∂y}=u’\)
Hence, by putting u’=e^u, we get
\(x \frac{∂u}{∂x}+y \frac{∂u}{∂y}=\frac{e^u}{e^u} = 1\), ……(1)
Now, let v’ = ln(v)= \(\frac{x^2+y^2}{x+y}=xf(\frac{y}{x})\) hence v’ satisfies euler’s theorem,
Hence,
\(x \frac{∂v’}{∂x}+y \frac{∂v’}{∂y}=v’\)
Hence, by putting v’=ln(v),we get
\(x \frac{∂v}{∂x}+y \frac{∂v}{∂y}=vln(v)\), …… (2)
By subtracting eq(1) and eq(2), we get
\(x \frac{∂z}{∂x}-y \frac{∂z}{∂y}=1-\frac{x^2+y^2}{x+y} e^{\frac{x^2+y^2}{x+y}}\)