Correct answer is (a) 2 tan(z)
To explain: Given \(z=sin^{-1}\frac{x^3+y^3+z^3}{x+y+z}\), put u=sin(z)=\(\frac{x^3+y^3+z^3}{x+y+z}=x^2 f(\frac{y}{x},\frac{z}{x})\)
Hence, \(x \frac{∂u}{∂x}+y \frac{∂u}{∂y}=2u\)
Putting u = sin(z), we get
\(x \frac{∂u}{∂x}+y \frac{∂u}{∂y}=\frac{2Sin(z)}{Cos(z)}=2Tan(z)\)