Right answer is (a) \(\frac{83}{6} \)
The explanation is: Given: \(∫_3^4∫_1^2(x^2+y)dxdy\)
Integrating with respect to y first, we get,
\(∫_3^4(x^2(y)_1^2+(\frac{y^2}{2})_1^2)dx= ∫_3^4(x^2+\frac{3}{2}) dx\)
Next integrating with respect to x, we get,
\((\frac{x^3}{3})_3^4+\frac{3}{2}(x)_3^4= \frac{37}{3}+\frac{3}{2}=\frac{83}{6}\)