The correct choice is (a) x^7 Sin(x) + 7x^6 Cos(x) + 42x^5 Sin(x) + 210x^4 Cos(x) + 840x^3 Sin(x) + 2520x^2 Cos(x) + 5040xSin(x) + 5040Cos(x)
The explanation: Add constant automatically
By, f(x)=\(\int uvdx=\sum_{i=0}^n (-1)^i u_i v^{i+1}\)
Let, u = x^7 and v = Cos(x),
∫x^7 Cos(x) dx = x^7 Sin(x) + 7x^6 Cos(x) + 42x^5 Sin(x) + 210x^4 Cos(x) + 840x^3 Sin(x) + 2520x^2 Cos(x) + 5040xSin(x) + 5040Cos(x)