The correct answer is (d) 0.35
To elaborate: Given: \(∫_0^8x^\frac{1}{3}dx,n = 3,\)
Let \(f(x)= x^\frac{1}{3},\)
\(∆x = \frac{b-a}{2}= \frac{8-0}{2}=4\) ………………since b=8, a=0 (limits of the given integral)
Hence endpoints xi have coordinates {0, 2, 4, 6, 8}.
Calculating the function values at xi, we get,
\(f(0)= 0^\frac{1}{3}=0\)
\(f(2)= 2^\frac{1}{3}\)
\(f(4)= 4^\frac{1}{3}\)
\(f(6)= 6^\frac{1}{3}\)
\(f(8)= 8^\frac{1}{3} =2\)
Substituting these values in the formula,
\(∫_0^8x^\frac{1}{3} dx ≈ \frac{∆x}{3} [f(0)+4f(2)+2f(4)+4f(6)+f(8)]\)
\( ≈\frac{2}{3}[0+4(2^\frac{1}{3})+2(4^\frac{1}{3})+ 4(6^\frac{1}{3})+2] ≈ 11.65\)
Actual integral value,
\(∫_0^8x^\frac{1}{3} dx= \left(\frac{x^\frac{4}{3}}{\frac{4}{3}}\right)_0^8=12\)
Error in approximating the integral = 12 – 11.65 = 0.35