Right option is (b) 6
The explanation: It is observed from equations that the region is made of parallelepiped thus volume of parallelepiped is given by triple integral over the given region.
i.e by using substitutions as x+y+z=p, y+z=q, z=r the new region becomes R^* where p varies from 0 to 3, q varies from 0 to 2 & r varies from 0 to 1 jacobian of this transformation is given by
\(J\left(\frac{p,q,r}{x,y,z}\right) = \begin{vmatrix}
\frac{∂p}{∂x} & \frac{∂p}{∂y} &\frac{∂p}{∂z}\\
\frac{∂q}{∂x} &\frac{∂q}{∂y} &\frac{∂q}{∂z}\\
\frac{∂r}{∂x} &\frac{∂r}{∂y} &\frac{∂r}{∂z}\\
\end{vmatrix} = \begin{vmatrix}
1&1&1\\
0&1&1\\
0&0&1\\
\end{vmatrix} = 1(1) – 1(0) + 1(0) = 1\)
but we need \(J\left(\frac{x,y,z}{p,q,r}\right) \,w.k.t\, J\left(\frac{x,y,z}{p,q,r}\right) J\left(\frac{p,q,r}{x,y,z}\right) = 1 \,thus\, J\left(\frac{x,y,z}{p,q,r}\right)=1\)
now the volume is given by \(\int_ 0^1 \int_ 0^2\int_ 0^3 \,dp \,dq \,dr = \int_ 0^1 \int_ 0^2 3\, dq \,dr = \int_ 0^1 6dr = 6.\)