The correct option is (c) (-x^3 Cos(x) + 3x^2 Sin(x) + 6xCos(x)-6Sin(x))(-y^3 Cos(y) + 3y^2 Sin(y) + 6yCos(y) – 6Sin(y))
For explanation I would say: Add constant automatically
∫x^3 Sin(x)dx = -x^3 Cos(x) + 3∫x^2 Cos(x)dx
∫x^2 Cos(x)dx = x^2 Sin(x) – 2∫xSin(x)dx
∫xSin(x)dx = -xCos(x) + ∫Cos(x)dx = -xCos(x) + Sin(x)
=> ∫x^3 Sin(x)dx = -x^3 Cos(x) + 3[x^2 Sin(x) – 2[-xCos(x) + Sin(x)]]
=> ∫x^3 Sin(x)dx = -x^3 Cos(x) + 3x^2 Sin(x) + 6xCos(x) – 6Sin(x)
and, ∫y^3 Sin(y)dy = -y^3 Cos(x) + 3∫y^2 Cos(y)dy
∫y^2 Cos(y)dy = y^2 Sin(y) – 2∫ySin(y)dy
∫ySin(y)dy = -yCos(y) + ∫Cos(y)dy = -yCos(y) + Sin(y)
=> ∫y^3 Sin(y)dy = -y^3 Cos(y) + 3[y^2 Sin(y) – 2[-yCos(y) + Sin(y)]]
=> ∫y^3 Sin(y)dy = -y^3 Cos(y) + 3y^2 Sin(y) + 6yCos(y) – 6Sin(y)
Hence, ∫∫x^3 y^3 sin(x) sin(y) dxdy = (∫x^3 Sin(x)dx)(∫y^3 Sin(y)dy) = (-x^3 Cos(x) + 3x^2 Sin(x)+6xCos(x) – 6Sin(x))(-y^3 Cos(y) + 3y^2 Sin(y) + 6yCos(y) – 6Sin(y)).