The correct choice is (b) Sum of infinite factorials
The explanation is: \(\int_{-\infty}^\infty e^t (t-t^2/2+t^3/3-….)dt\)
\(\int_{-\infty}^\infty te^t dt=0.5 \int_{-\infty}^\infty te^t dt\)
Now,
\(\int_{-\infty}^\infty te^t dt– 1/2 \int_{-\infty}^\infty t^2 e^t dt + (1/3) \int_{-\infty}^\infty t^3 e^t dt-………\)
Now, \(\int_{-\infty}^\infty t^n e^t dt=n!/(-1)^{n+1}\)
Hence,
\(\int_{-\infty}^\infty t^n e^t dt = 1 – (1/2)(2!/(-1)^3) + (1/3)(3!/)-…….\)
\(\int_{-\infty}^\infty t^n e^t dt\) = 0! + 1! + 2! + 3! +…. = Sum of infinite factorials.