Correct answer is (d) 0
The explanation is: y(t)=\(\frac{1}{2} t Sin(2t)u(t)\)
Laplace transform of Sin(2t)=\(\frac{2}{s^2+4}\)
Laplace transform of tSin(2t)=\(-\frac{d}{dt} \frac{2}{s^2+4}=\frac{2(2s)}{(s^2+4)^2}=\frac{4s}{(s^2+4)^2}\)
Laplace transform of \(\frac{1}{2}tsin(2t)=\int_{-0}^{\infty} e^{-st} tsin(t)cos(t)dt=\frac{2s}{[s^2+4]^2}\)
Putting, s = 0, \(\int_0^{\infty} tsin(t)cos(t)dt=0\)