Right answer is (c) \(\begin{bmatrix}42&-14&70\\21&-21&-21\\105&119&203\end{bmatrix}\)
Explanation: Explanation: For the given Matrix,
A=\(\begin{bmatrix}2&-3&1\\2&0&-1\\1&4&5\end{bmatrix}\)
The characteristic polynomial is given by –
α^3-(Sum of diagonal elements) α^2+(Sum of minor of diagonal element)α-|A|=0
α^3-7α^2+19α-49=0
The Cayley Hamilton’s Theorem states that every matrix satisfies its Characteristic Polynomial.
Thus,
A^3-7A^2+19A-49I=0
A^3+19A=7A^2+49I
A^3+19A=7\(\begin{bmatrix}-1&-2&10\\3&-10&-3\\15&17&22\end{bmatrix}+49\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}\)
A^3+19A=\(\begin{bmatrix}-7+49&-17&70\\21&-70+49&-21\\105&119&154+49\end{bmatrix}\)
A^3+19A=\(\begin{bmatrix}42&-14&70\\21&-21&-21\\105&119&203\end{bmatrix}\).