The correct option is (b) Orthogonal trajectory is r^n=k cosnθ where k is an constant
The best explanation: Consider r^n = a sinnθ..(1) –> n log r = log a + log(sinnθ) …differentiating w.r.t θ
\( \frac{n}{r} \frac{dr}{dθ} = \frac{n cosnθ}{sinnθ} \,or\, \frac{1}{r} \frac{dr}{dθ} = \frac{cosnθ}{sinnθ} = cot \,nθ\)
replacing \(\frac{1}{r} \frac{dr}{dθ} \,by\, -r\frac{dθ}{dr} \,we\,\, get\, -r\frac{dθ}{dr} = cot \,nθ\)
separating the variables and integrating \(\int \frac{dr}{r} \int tan\,nθ \,dθ = c \)
\( \rightarrow log \,r + \frac{log(secnθ)}{n} = c\) or n log r + log(sec nθ) = nc = logk
log(r^n secnθ) = log k –> r^n sec nθ=k or r^n=k cosnθ ..(2) is the required orthogonal trajectory since (1)&(2) are not same the given family of curve is not self orthogonal.