Right answer is (a) Stable
For explanation: Given, y(t-2a)-3y(t-a)+2y(t)=x(t-a), then
Taking Laplace transform, e^-2as Y(s)-3e^-as Y(s)+2Y(s)=e^-as X(s),
Hence, \(H(s)=\frac{e^{-as}}{(1-e^{-as})(2-e^{-as})}\)
To find the stability, we should have, \(∫_{-∞}^∞ H(s)ds>0\)
Hence, \(\int_{-\infty}^\infty \frac{e^{-as}}{(1-e^{-as})(2-e^{-as})} ds\)
Let, \(e^{-as}=z=>-ae^{-as} ds=dz\)
\(\frac{1}{a} \int_0^∞ \frac{1}{(1-z)(2-z)} dz=\frac{1}{a} \int_0^∞ \left [\frac{1}{(z-1) }-\frac{1}{z-2} \right ]dz=\frac{1}{a} ln\left [\frac{z-1}{z-2}\right ]\)
putting, z=0, \(\frac{1}{a} ln\left [\frac{z-1}{z-2}\right ]=\frac{1}{a} ln(\frac{1}{2})\)
putting, z=∞, \(\frac{1}{a} ln\left [\frac{z-1}{z-2}\right ]=\frac{1}{a} ln[\frac{1-1/z}{1-2/z}]\)=0
hence, \(\int_{-\infty}^\infty \frac{e^{-as}}{(1-e^{-as})(2-e^{-as})} ds=\frac{1}{a} ln(\frac{1}{2})\)
It is stable.