Right answer is (c) ^t⁄4 sin(2t)
Explanation: Given, \(Y(s)=\frac{s}{(s^2+ 4)^2}\)
Inverse Laplace transform of \(\frac{1}{s^2+4}\)=sin(2t)
Now, \(\frac{d}{ds} (\frac{1}{s^2+4})\)=-tsin(2t)
Inverse lapalce of \(\frac{-2s}{(s^2+4)^2}=-\frac{t}{2} sin(2t)\)
Inverse lapalce of \(\frac{s}{(s^2+4)^2}=\frac{t}{4} sin(2t)\)