The correct choice is (b) \(y = c_1 + c_2 \,e^{2x} – \frac{e^x sin x}{2}\)
The best explanation: A.E is m^2 – 2m = 0 or m(m – 2) = 0 –> m = 0,2
yc = c1 + c2 e^2x and ∅(x) = e^x sinx. we assume PI in the form
yp = e^x (a cos x + b sin x)….(1) since 1±i are not roots of the A.E.
we have to find a, b such that yp” – 2yp‘ = e^x sinx…..(2)
from (1) yp‘ = e^x (- a sin x + b cos x) + e^x (a cos x + b sin x)
yp” = e^x (- a sin x + b cos x) + e^x (a cos x + b sin x) + e^x (- a cos x – b sin x) + e^x (- a sin x + b cos x) = 2e^x (- a sinx + b cosx) hence (2) becomes
2e^x (- a sinx + b cosx) – 2e^x (- a sinx + b cosx)
– 2e^x (a cosx + b sinx) = e^x sinx i.e – 2ae^x cosx – 2be^x sinx = e^x sinx
–> – 2a = 0, – 2b = 1 –> a = 0, b = – 1/2 hence (1) becomes \(y_p = \frac{-e^x sin x}{2}\)
y = yc + yp = c1 + c2 e^2x – \(\frac{e^x sin x}{2}\) .