Correct option is (d) y = y0 cosλt + (y1/λ)sinλt + \(\frac{μ sin ωt}{-ω^2+λ^2}\)
The best explanation: \(m \frac{d^2 y}{dt^2} + ky = A \,sin \,ωt\, \,or\, \frac{d^2 y}{dt^2} + \frac{k}{m} y = \frac{A}{m} sin ωt \rightarrow \frac{d^2 y}{dt^2} + λ^2 y = μ sin ωt\)
A.E is m^2 + λ^2 = 0 –> m = ±λi –> y = c1 cosλt + c2 sinλt at t=0 y=y0
–> c1 = y0 therefore yc = y0 cosλt + c2 sinλt
now differentiate and substituting y’(0)=y1
y’ = -y0 λsinλt + λc2 cosλt at t = 0 y1/λ = c2 and yc = y0 cosλt + (y1/λ)sinλt
to find particular solution \(y_p = \frac{μ sin ωt}{D^2+λ^2}\) assuming μ as constant \(y_p = \frac{μ sin ωt}{-ω^2+λ^2}\)
∴y=y0 cosλt + (y1/λ)sinλt + \(\frac{μ sin ωt}{-ω^2+λ^2}\).