Correct option is (b) y = e^(- λt) (y0 cosvt+\(\left(\frac{y_1+ λy_0}{v}\right)\) sinvt)
To explain: The governing D.E is given by \(m \frac{d^2 y}{dt^2} + c \frac{dy}{dt} + ky=0;\) c>0
–> \( \frac{d^2 y}{dt^2} + \frac{c}{m} \frac{dy}{dt} + \frac{k}{m}y = 0\) given c/m=2λ, k/m=μ^2 thus D.E takes the form
\( \frac{d^2 y}{dt^2} + 2λ d\frac{dy}{dt} + μ^2 y = 0\) it’s A.E is m^2 + 2λm+ μ^2 = 0
\(m=\frac{-2λ±\sqrt{4λ^2-4μ^2}}{2} = – λ±vi\)…. given \(v = \sqrt{μ^2-λ^2}\)
yc = y = e^– λt (c1 cosvt + c2 sinvt ) to find constants we use initial condition
at t=0 y = y0 –> c1 = y0 therefore y = e^-λt (y0 cosvt + c2 sinvt)
now differentiate and substituting y’(0)=y1
y’ = – λe^– λt (y0 cosvt + c2 sinvt) + e^– λt (-y0 vsinvt + vc2 cosvt)
at t=0, y1 = – λy0 + vc2 –> c2 = \(\left(\frac{y_1+ λy_0}{v}\right)\) thus y=e^– λt (y0 cosvt+\(\left(\frac{y_1+ λy_0}{v}\right)\) sinvt).