The correct choice is (c) \(\frac{1}{2} log \left (\frac{s+a}{s-a}\right )\)
To elaborate: In the given question,
L(sinh(at))=\(\frac{a}{s^2-a^2}\)
By effect of division by t,
\(L\left (\frac{sinh(at)}{t}\right )=\int_{s}^{\infty}\frac{a}{s^2-a^2} ds\)
=\(a×\frac{1}{2a}×log \left (\frac{s-a}{s+a}\right ) \) in limits s to ∞
=\(\frac{1}{2} log(0)-\frac{1}{2} log \left (\frac{s-a}{s+a}\right )\)
=\(\frac{1}{2} log \left (\frac{s+a}{s-a}\right )\).