The correct choice is (c) \(\frac{1}{4} tsin(2t)\)
For explanation: In the given question,
Let \(p_1(s) = \frac{1}{s^2+4}\) and \(p_2(s) = \frac{1}{s}\)
\(f_1 (t) = L^{-1} (\frac{1}{s^2+4}) = \frac{sin(2t)}{2}\)
\(f_2 (t) = L^{-1} (\frac{s}{s^2+4}) = cos(2t)\)
By Convolution Theorem,
\(L^{-1} (p_1(s)×p_2(s)) = \int_{0}^{t} f_1(u) f_2(t-u) dt\)
\(L^{-1} \left (\frac{s}{(s^2+4^2)^2}\right )=\int_{0}^{t} sin(2u)×\frac{1}{2}×cos(2(t-u))du\)
=\(\frac{1}{4}[tsin(2t)-\frac{cos(2t)}{4}+\frac{cos(2t)}{4}]\)
=\(\frac{1}{4} tsin(2t)\)
Thus, the correct answer is \(\frac{1}{4} tsin(2t)\) .