Right answer is (a) \(\frac{-3}{2} e^{-2x} e^{-t/3}\)
Easiest explanation: \(u(x,t) = X(x) T(t) \)
Substituting in the given equation, \(X’T = 36T’X + 10XT \)
\(\frac{X’}{X} = k \) which implies \(X = c e^{kx} \)
\(\frac{T’}{T} = \frac{(k-10)}{36} \) which implies \(T = c’e^{\frac{k-10}{36} t} \)
\(\frac{∂u}{∂x} (t=0)=3e^{-2x}= cc’ke^{kx} \)
Therefore k = -2 and cc’ = \(\frac{-3}{2} \)
Hence, \(u(x,t) = \frac{-3}{2} e^{-2x} e^{-t/3}. \)