The correct choice is (c) \(e^{\frac{-3}{x}} e^{\frac{2}{y}} \)
Best explanation: \(u(x,t) = X(x) T(t) \)
\(x^2 X’Y+y^2 Y’X=XY\)
\(X = ce^{\frac{-k}{x}} \)
\(Y = c’e^{\frac{k-1}{y}} \)
\(u(x,t) = cc’ e^{\frac{-k}{x}} e^{\frac{k-1}{y}} \)
\(u(0,y) = e^{\frac{2}{y}}= cc’ e^{\frac{k-1}{y}} \)
k = 3 and cc’ = 1
Therefore \(u(x,t) = e^{\frac{-3}{x}} e^{\frac{2}{y}}. \)