The correct option is (a) \(9e^{\frac{17}{5} x} e^{-5y} \)
The best I can explain: \( u(x,t) = X(x) T(t) \)
\(5X’Y + 3Y’X = 2XY \)
\(\frac{X’}{X} = \frac{k}{5} \) which implies \( X= c e^{\frac{k}{5} x} \)
\(\frac{Y’}{Y} = 2-k / 3\) which implies \( Y = c’ \, e^{\frac{2-k}{3} y} \)
Therefore \(u(x,t) = cc’ e^{\frac{k}{5} x} e^{\frac{2-k}{3} y} \)
\(u(0,y) = cc’ = e^{\frac{2-k}{3} y} \, 9 \, e^{-5y} \)
Hence cc’ = 9 and k = 17
Therefore, \(u(x,t) = 9 \, e^{\frac{17}{5} x} e^{-5y}. \)