Right option is (b) \(u=\frac{x^3}{3} e^t+xe^t+t\)
Easy explanation: Given: \(\frac{∂^2 u}{∂x^2}=2xe^t,\)……………………………………………………………………………… (1)
Integrating (1) with respect to x we get,
\(\frac{∂u}{∂x}=x^2 e^t+f(t),\) where f(t) = arbitrary function ………………………………. (2)
Integrating again with respect to x we get,
\(u=\frac{x^3}{3} e^t+xf(t)+g(t)\)………………………………………………………………………………………… (3)
Applying the given initial condition, \(\frac{∂u}{∂x}(0,t)= e^t\) in equation (2), we get, f(t)=e^t.
Applying the initial condition, u(0,t)=t in equation (3), we get, g(t)=t.
Therefore, the solution, \(u=\frac{x^3}{3} e^t+xe^t+t.\)