Correct option is (c) \(\frac{2A}{A^2+ω^2} \)
The explanation is: CTFT {x (t)} = X (jω) = \(\int_{-∞}^∞ x(t) e^{-jωt} \,dt\)
= \(\int_{-∞}^∞ e^{-A|t|} e^{-jωt} \,dt\)
= \(\int_{-∞}^0 e^{-A(-t)} e^{-jωt} \,dt + \int_0^∞ e^{-At} e^{-jωt} \,dt\)
= \(\int_{-∞}^0 e^{At} e^{-jωt} \,dt + \int_0^∞ e^{-At} e^{-jωt} \,dt\)
= \(\int_{-∞}^0 e^{(A-jω)t} \,dt + ∫_0^∞ e^{-(A+jω)t} \,dt\)
= \([\frac{1}{A-jω} e^{(A-jω)t}]_{-∞}^0 + [\frac{1}{-(A+jω)} e^{-(A+jω)t}]_0^∞\)
= \([\frac{1}{A-jω} + \frac{1}{A+jω} = \frac{2A}{A^2+ω^2}]\)
∴ x(jω) = \(\frac{2A}{A^2+ω^2} \).