Right option is (b) –\((\frac{2πk}{T})^2 X[k]\)
The explanation is: \(x (t) = ∑_{k=-∞}^∞ X[k]e^{j \frac{2π}{T} kt}\)
Now, \(\frac{dx(t)}{dt} = -j (\frac{2π}{T})k ∑_{k=-∞}^∞ X[k]e^{j \frac{2π}{T} kt}\)
And, \(\frac{d^2 x(t)}{dt^2} = -(\frac{2π}{T})^2 k^2 ∑_{k=-∞}^∞ X[k]e^{j \frac{2π}{T} kt}\)
∴ Y[k] = – \((\frac{2πk}{T})^2 X[k]\).