Right choice is (d) \(\frac{4}{5 + 3 sint}\)
To explain I would say: \(x (t) = ∑_{k=-∞}^∞ X[k]e^{jkt}\)
Or, x (t) = \(∑_{k=-∞}^{-1} (-\frac{1}{3})^{-k} e^{jk} + ∑_{k=0}^∞ (-\frac{1}{3})^k e^{jkt}\)
= \(\frac{\frac{-1}{3} e^{-jt}}{1+\frac{1}{3} e{-jt}} + \frac{1}{1 + \frac{1}{3} e^{jt}}\)
= \(\frac{4}{5 + 3 sint}\).