Right choice is (c) \(\frac{1}{4}\)(δ(k+1] + 2δ[k] + δ[k-1])
The best I can explain: N=8, ω = \(\frac{2π}{8} = \frac{π}{4}\)
X[n] = cos^2 (\(\frac{π}{8}\) n) = \(\frac{1}{4}(e^{j(\frac{π}{8})n} + e^{-j(\frac{π}{8})n})^2\)
\(= \frac{1}{4}(e^{j(\frac{π}{8})n} + 2 + e^{-j(\frac{π}{8}n})^2\)
Or, X[k] = \(\frac{1}{4}\)(δ(k+1] + 2δ[k] + δ[k-1]).